

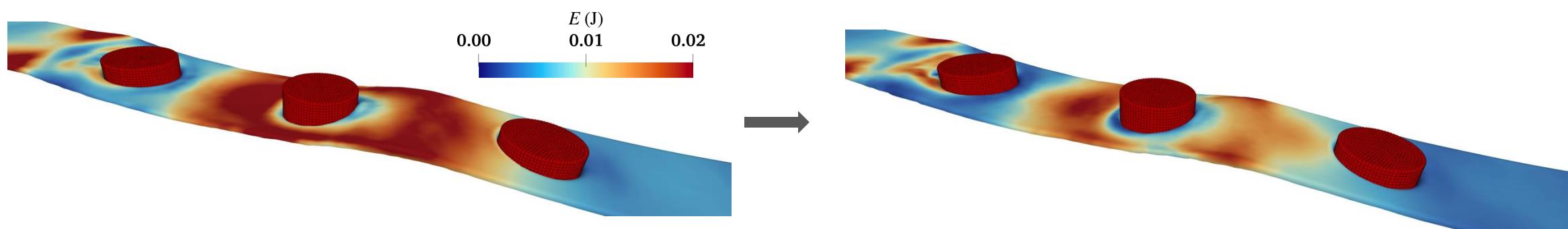
Coupling SPH with a Multi agent DRL framework for active flow control

Yi Zhan^{1,2}, Min Luo¹, Alejandro J. C. Crespo², Iván Martínez-Estévez², Abbas Khayyer³

¹ Ocean College, Zhejiang University ² EPhysLab, University of Vigo

³ Department of Civil and Earth Resources Engineering, Kyoto University

22nd October 2025

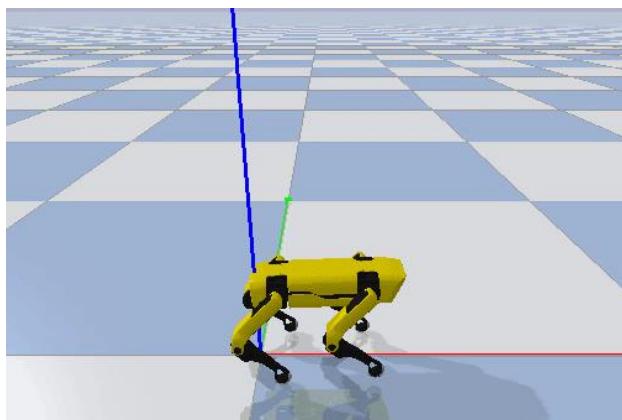


Contents

- Motivation
- SPH-MADRL coupling model
- Numerical validations

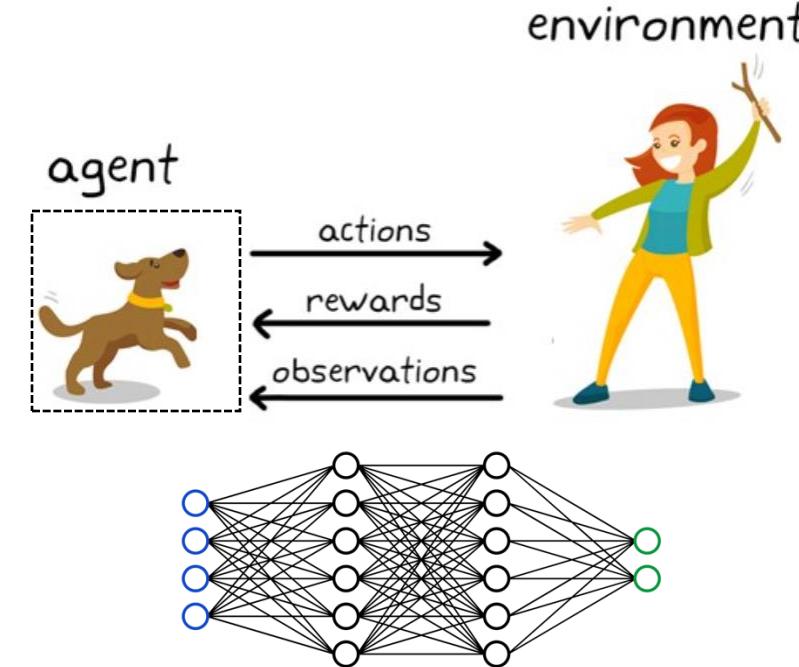
➤ Deep Reinforcement Learning (DRL)

Embodied Intelligence



Quadruped Robots

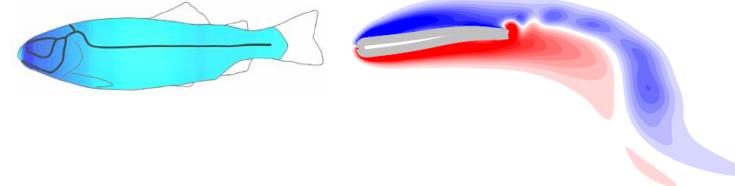
AlphaGo



- Marine vehicles

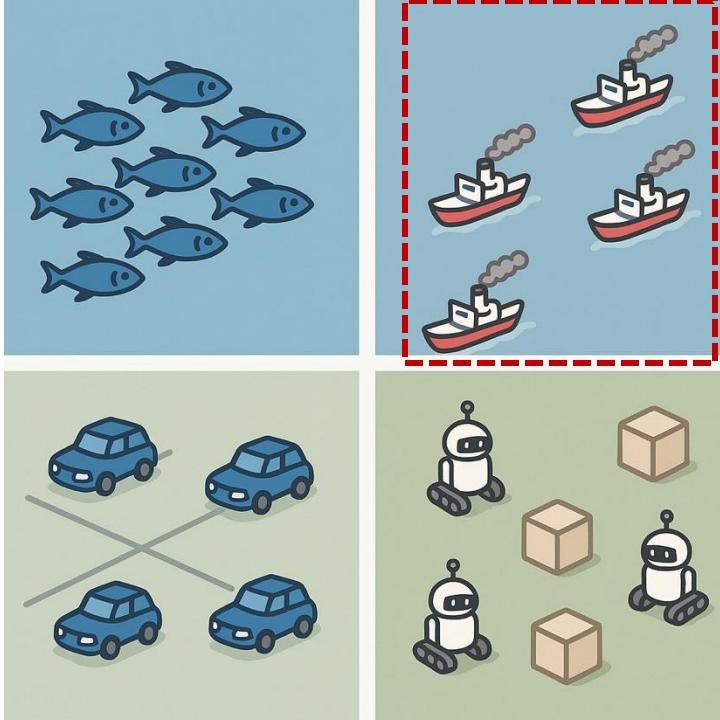
Collision Avoidance ?

Efficient swimming ?

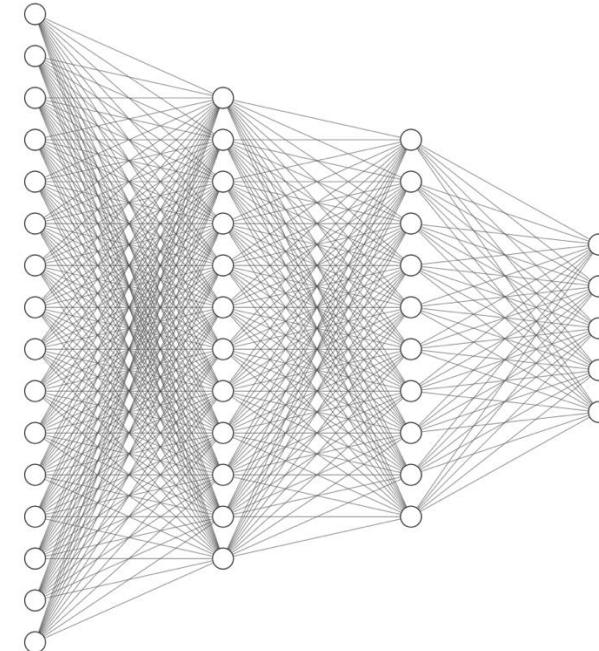


- Make decisions guided by neuron network
- Agent takes suitable action to maximize reward in a particular situation

➤ Multi agents



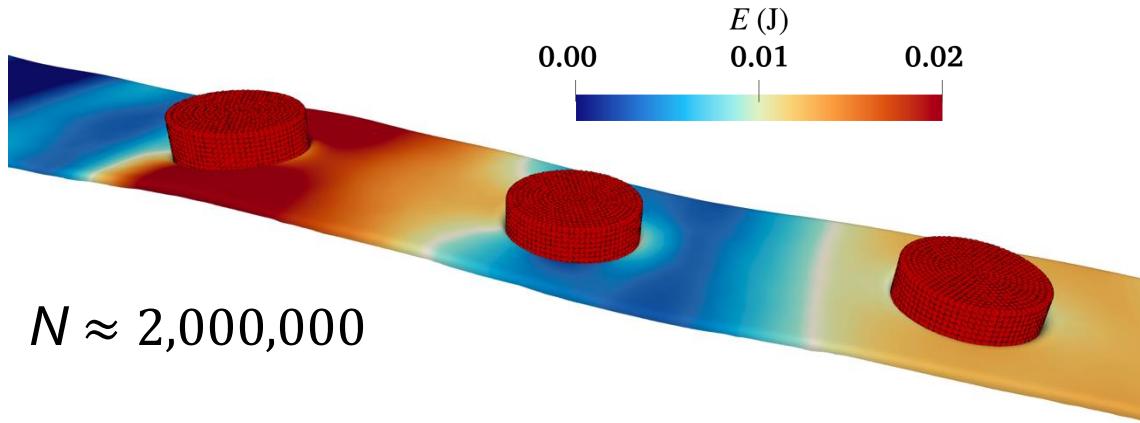
➤ Single NN, multi output



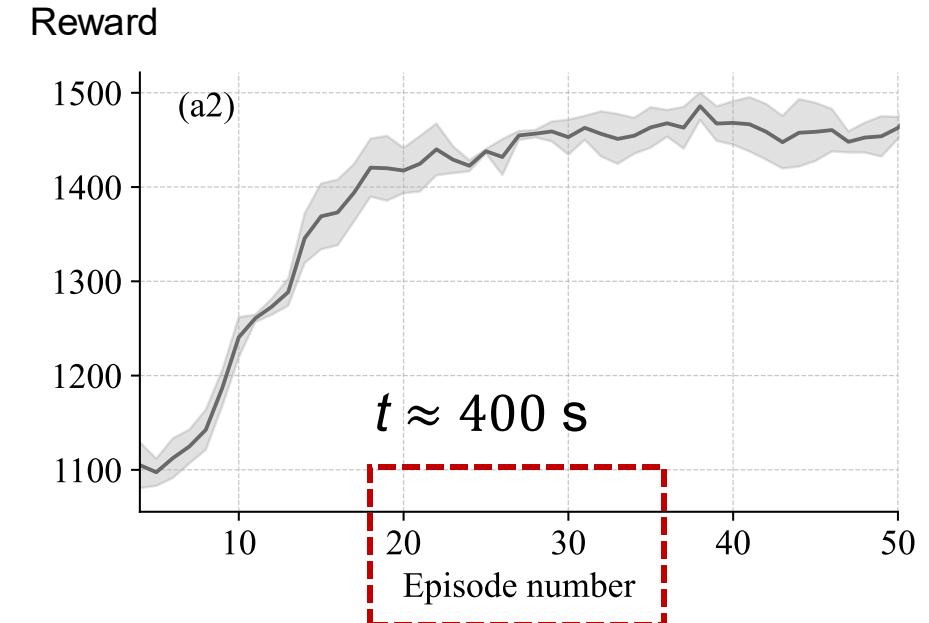
- Multi-agent decision-making scenarios are common in engineering

- ✖ More observations make single-agent input too large to train
- ✖ Real-time communication to obtain all agents' observations is infeasible

➤ Increase energy capture of Wave Energy Converter



- The number of particles in 3D simulations typically reaches the order of millions

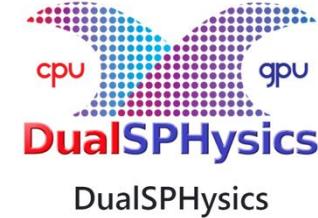


- At least 20 episodes are required for the training to reach stability

- Active control in ocean engineering → Coupling SPH and DRL
- Multi-agent decision-making scenarios → Multi-agent reinforcement learning
- Long term 3D simulations → Parallelism in GPU to accelerate SPH and DRL

Contents

- Motivation
- **SPH-MADRL coupling model**
- Numerical validations



δ -SPH model in DualSPHysics

$$\frac{D\rho_a}{Dt} = -\rho_a \sum_b \mathbf{u}_{ab} \cdot \nabla_a W_{ab} V_b + D_a, \quad \frac{D\mathbf{u}_a}{Dt} = -\sum_b m_b \left(\frac{p_b + p_a}{\rho_b \rho_a} + \Pi_{ab} \right) \nabla_a W_{ab} + \mathbf{g}$$

Further enhancements corresponding to four aspects

- i) Minimum energy dissipation \leftarrow Riemann stabilization term instead of artificial viscosity
- ii) Consistent particle shifting at and in the vicinity of free surface \leftarrow OPS
- iii) Enhanced resolution of the continuity equation \leftarrow VEM and VCS
- iv) Effective cleaning of velocity-divergence errors \leftarrow Combination of VEM and HPDC

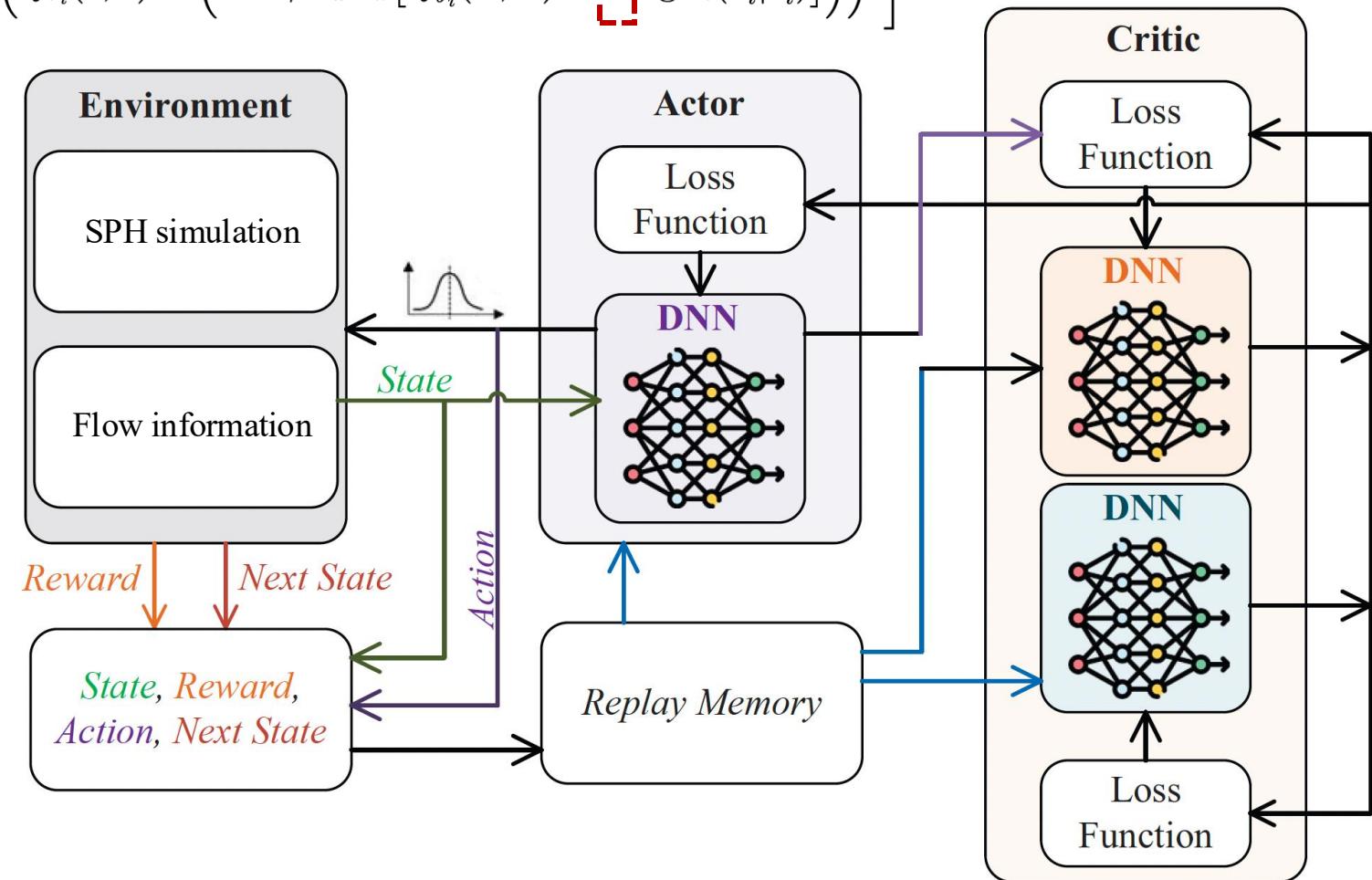
δ R-SPH-OPS-VCS-VEM-HPDC in DualSPHysics+ [1]

$$\frac{D\rho_a}{Dt} = -\rho_a \sum_b \mathbf{u}_{ab} \cdot \nabla_a W_{ab} V_b + D_a, \quad \frac{D\mathbf{u}_a}{Dt} = -2 \sum_b m_b \left(\frac{p^*}{\rho_a \rho_b} \right) \nabla_a W_{ab} + \mathbf{g} + \mathbf{a}_a^{\text{VEM}} - \nabla \psi_a, \quad p^* = \frac{1}{2} F(p_L, p_R) + \frac{1}{2} \phi \bar{\rho} (u_L - u_R), \quad \mathbf{r}'_a = \mathbf{r}_a + \delta \mathbf{r}_a^{\text{OPS}} + \delta \mathbf{r}_a^{\text{VCS}}$$

[1] Zhan, Yi, Min Luo, and Abbas Khayyer. "DualSPHysics+: An enhanced DualSPHysics with improvements in accuracy, energy conservation and resolution of the continuity equation." *Computer Physics Communications* (2024): 109389.

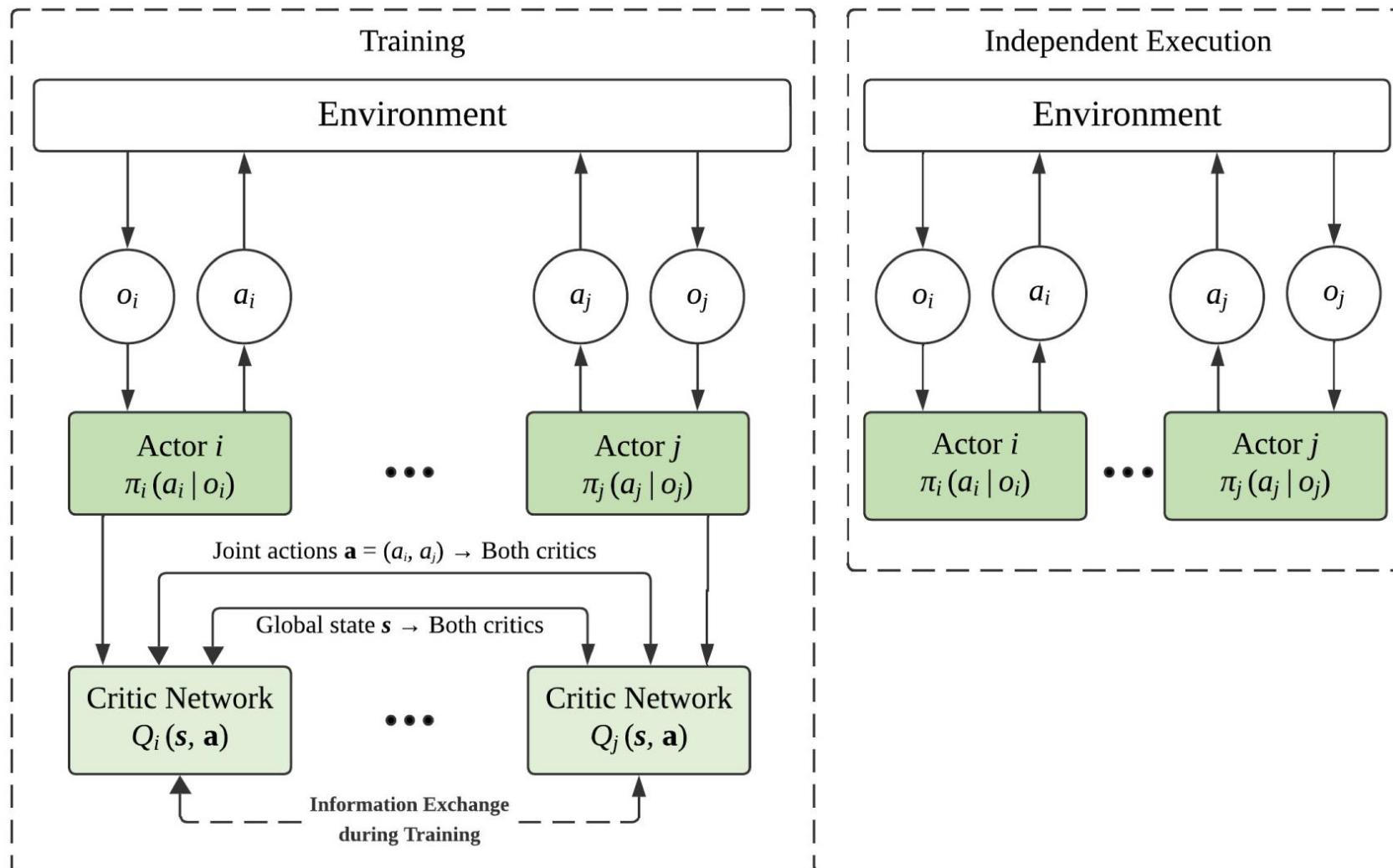
$$J_Q(\theta_i) = \mathbb{E}_{(s, a, r, s') \sim \mathcal{D}} \left[\left(Q_{\theta_i}(s, a) - \left(r + \gamma \mathbb{E}_{a' \sim \pi} [Q_{\bar{\theta}_i}(s', a') - \alpha \log \pi_i(a'_i | s'_i)] \right) \right)^2 \right]$$

- **Actor-Critic Framework:** Actor → learns optimal policy; Critic → evaluates the action by Actor NN
- **Entropy-Regularized Learning:** Promotes exploration by maximizing both reward and entropy
- **Automatic Temperature Tuning:** Dynamically balances exploration and exploitation



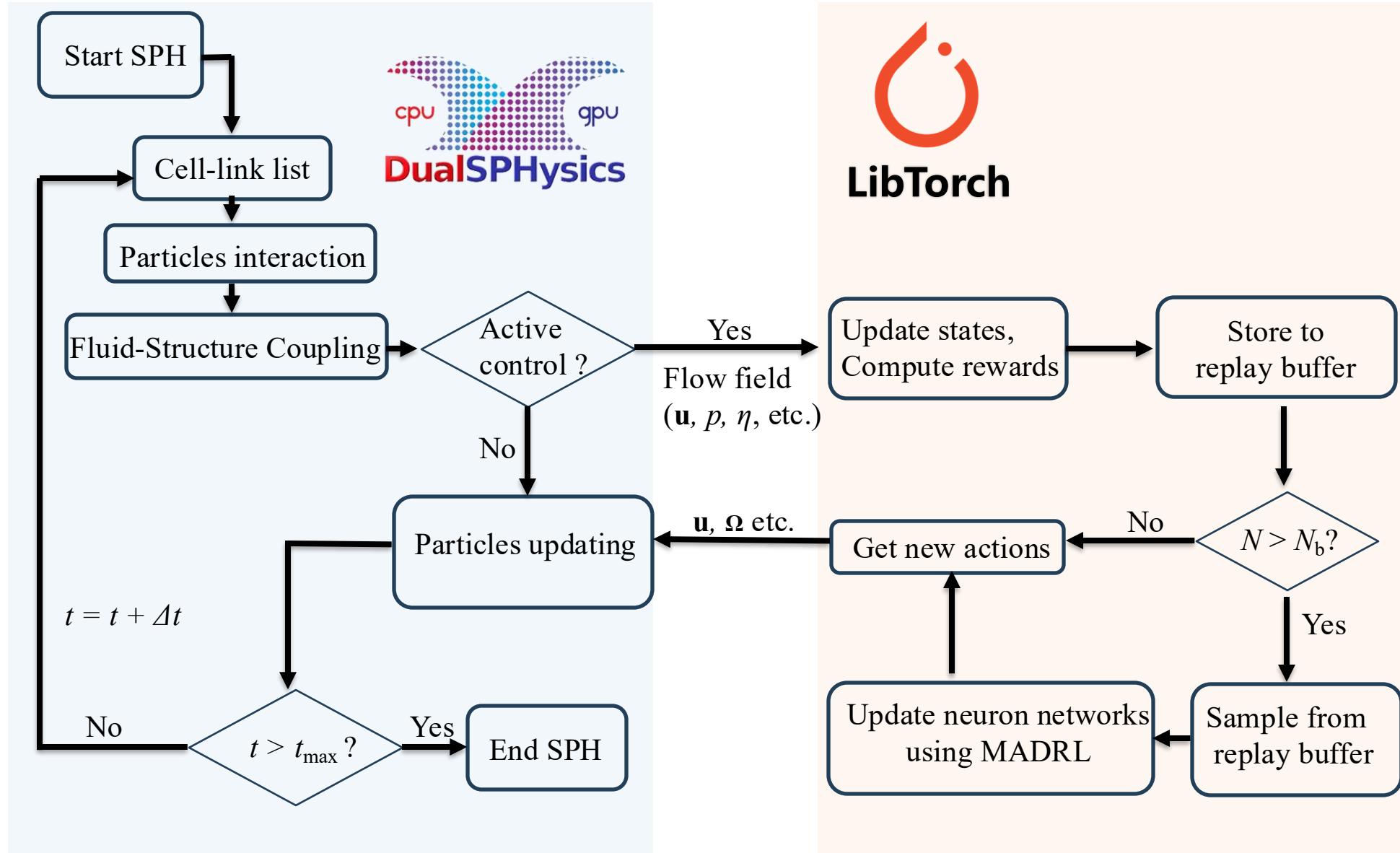
[1] Haarnoja, Tuomas, et al. "Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor." *International conference on machine learning*. Pmlr, 2018.

[2] Du, H., et al. "Enabling AI-generated content (AIGC) services in wireless edge networks. arXiv 2023." *arXiv preprint arXiv:2301.03220*.



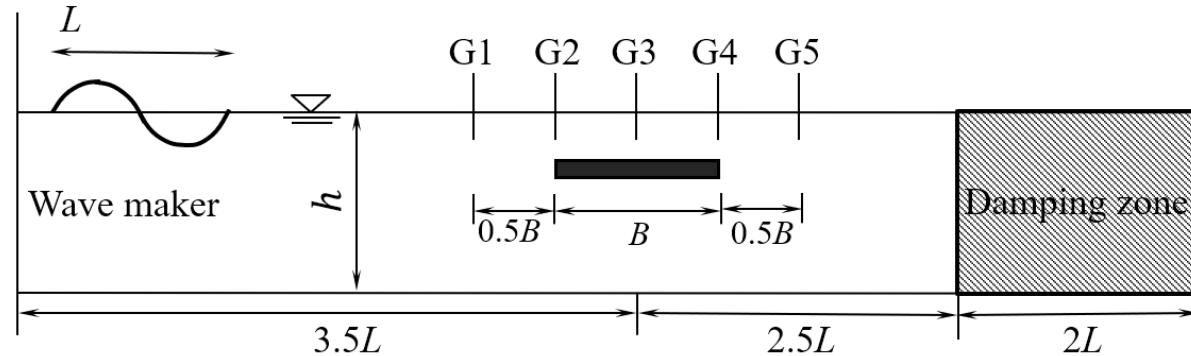
- **Centralized Training:** Critic network → Learn with global information for cooperative policy optimization
- **Decentralized Execution:** Actor network → Get actions independently using local observations

- Libtorch is linked to DualSPHysics+ as a dynamic library
- All codes are in C++ & CUDA and can be parallelized using GPU

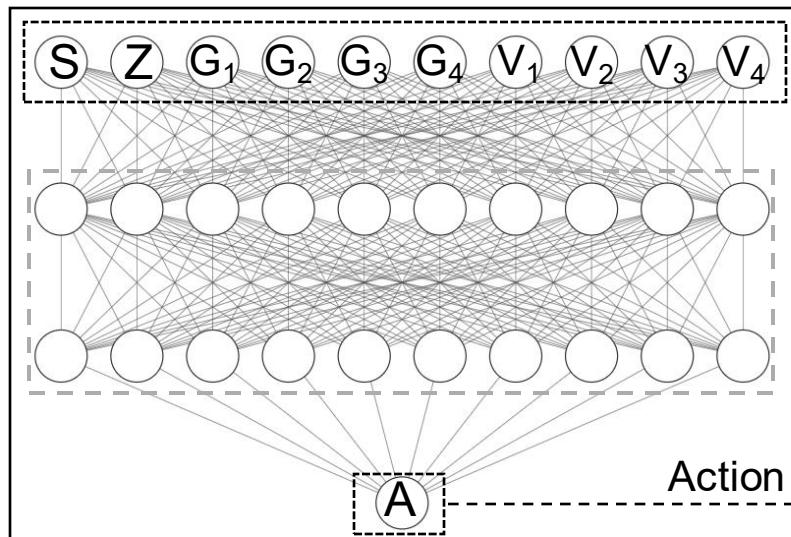


Contents

- Motivation
- SPH-MADRL coupling model
- Numerical validations



DRL ANN (10 x 256 x 256 x 1)



State

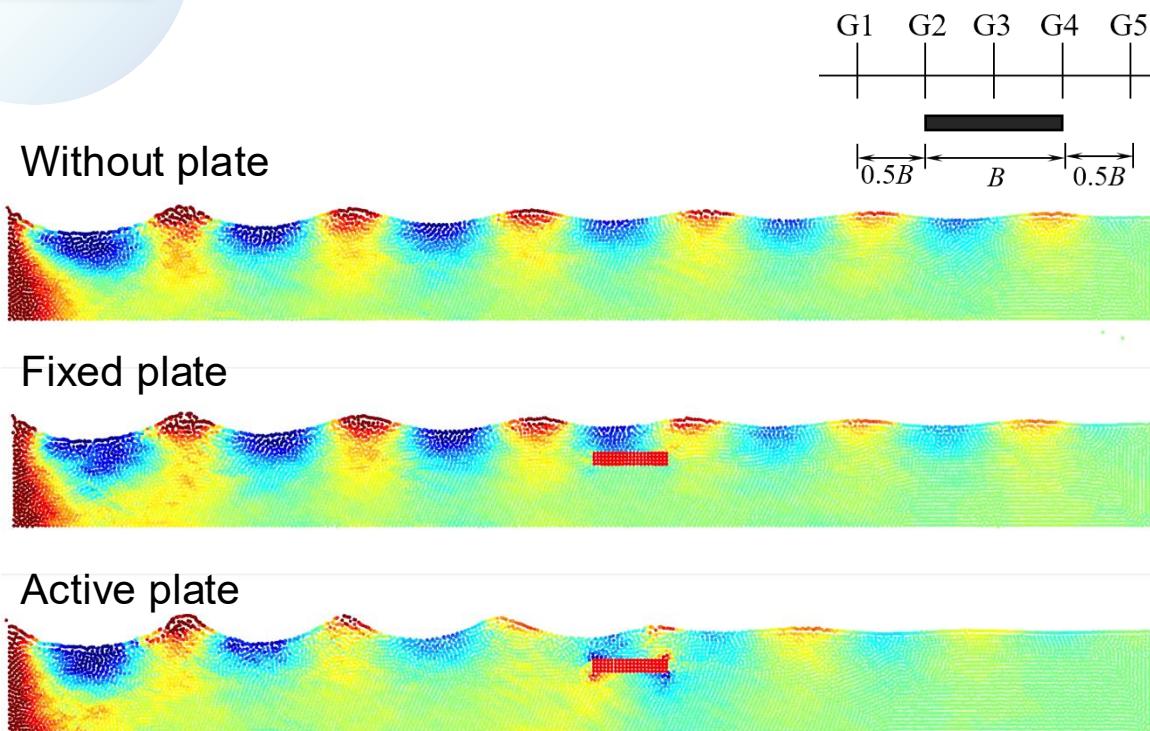
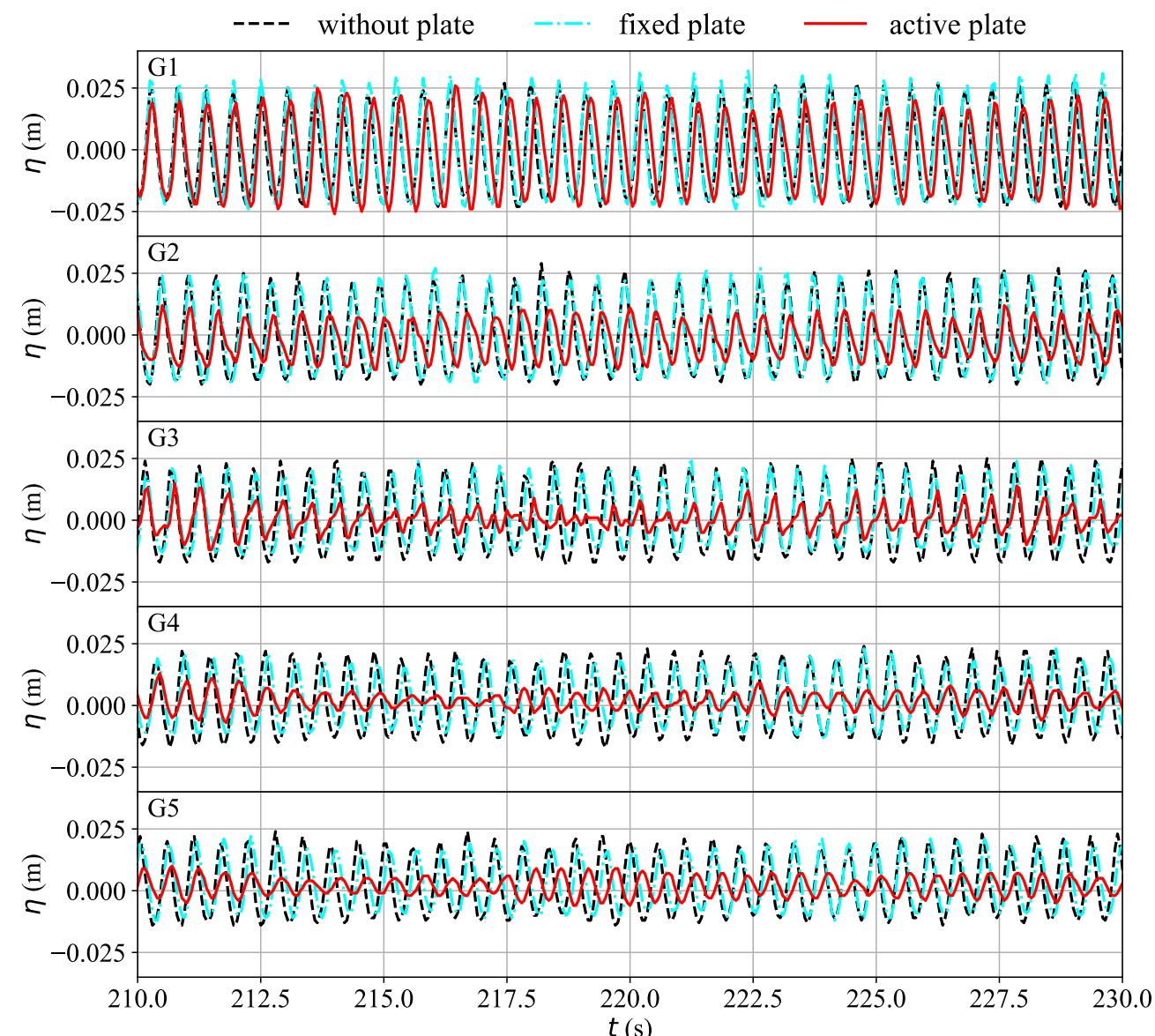
- Last action (S)
- Position of plate (Z)
- Wave height (G1-G4) and its change rate (V1-V4)

Environment Observation

Reward G5

- Fluid-structure interaction is simulated by DualSPHysics+

- The SPH solver acts as environment during training
- The reinforcement learning model guides movement of plate

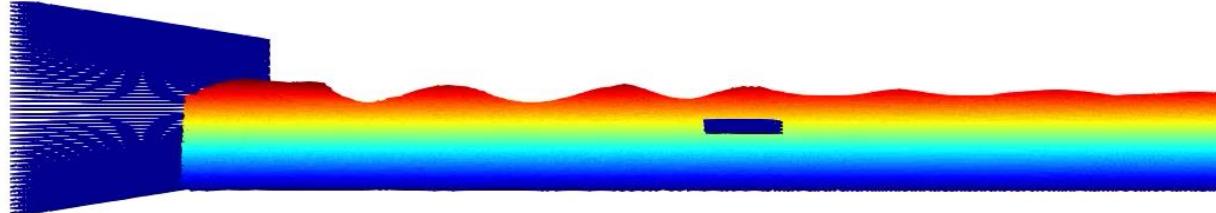
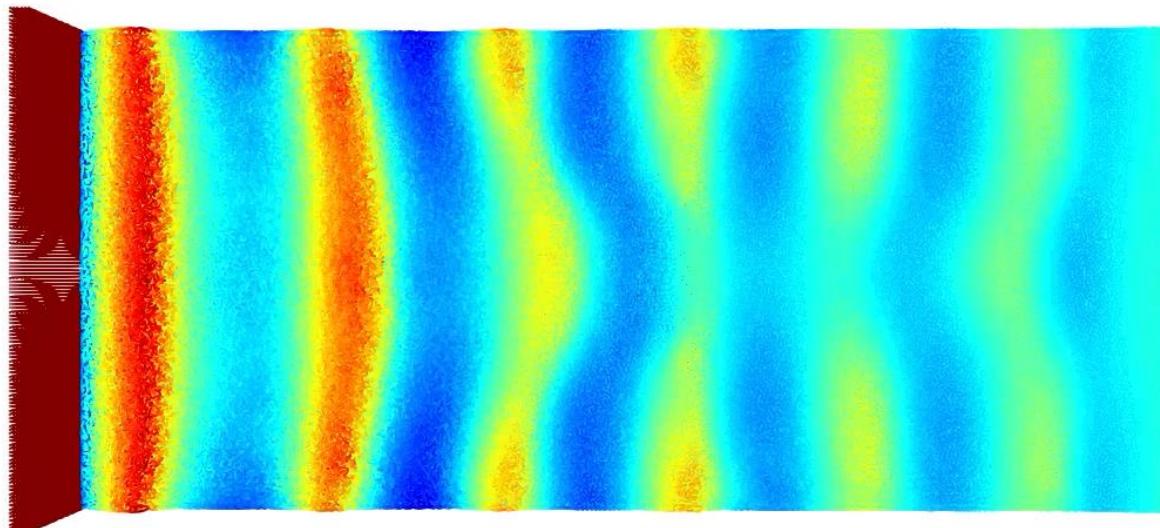


- Active control plate significantly reduces wave height
- Pulling the water body downward when the wave crest arrives

3.1

Active controlled plate breakwater : 3D simulation

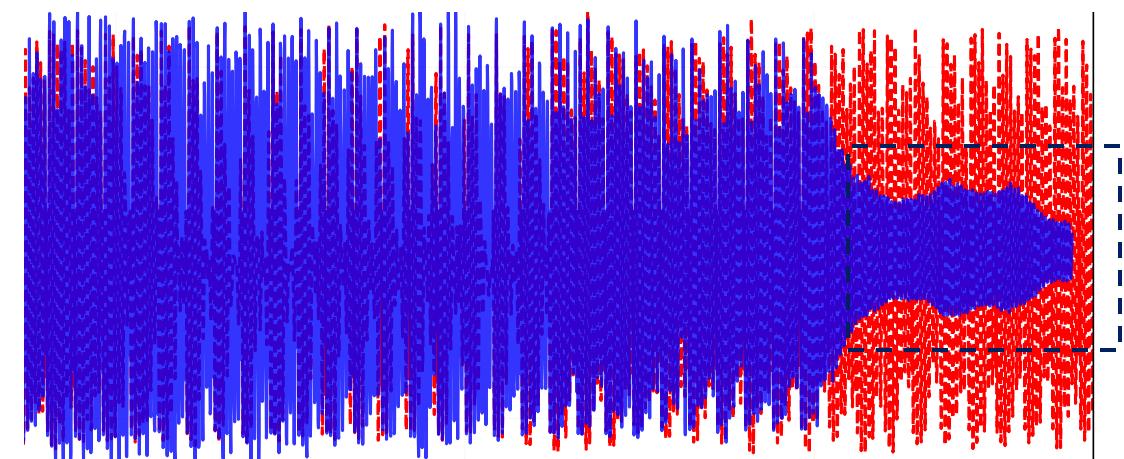
3D simulation : Wave elevation field

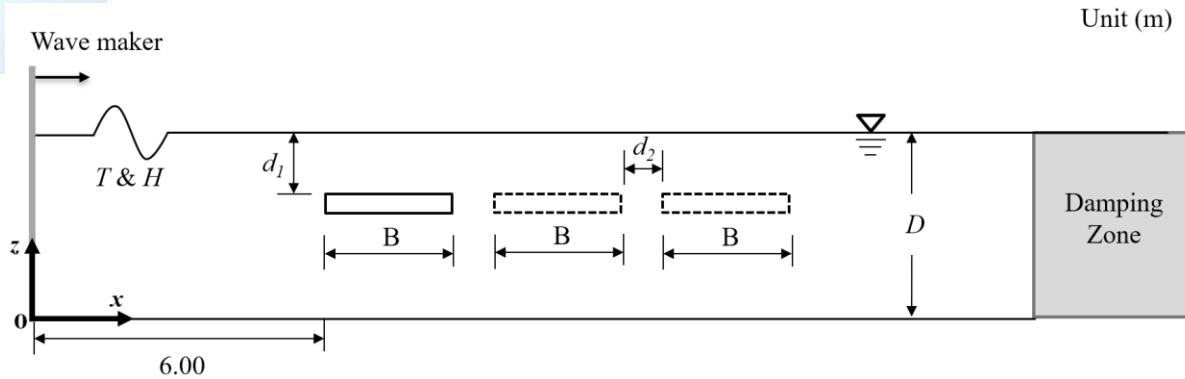


- Device: Nvidia RTX 4090 && AMD EPYC 9754

- $N \approx 2$ mil. Simulation : 300 s
Total runtime 500^+ h (cpu) \rightarrow 7 h (gpu)

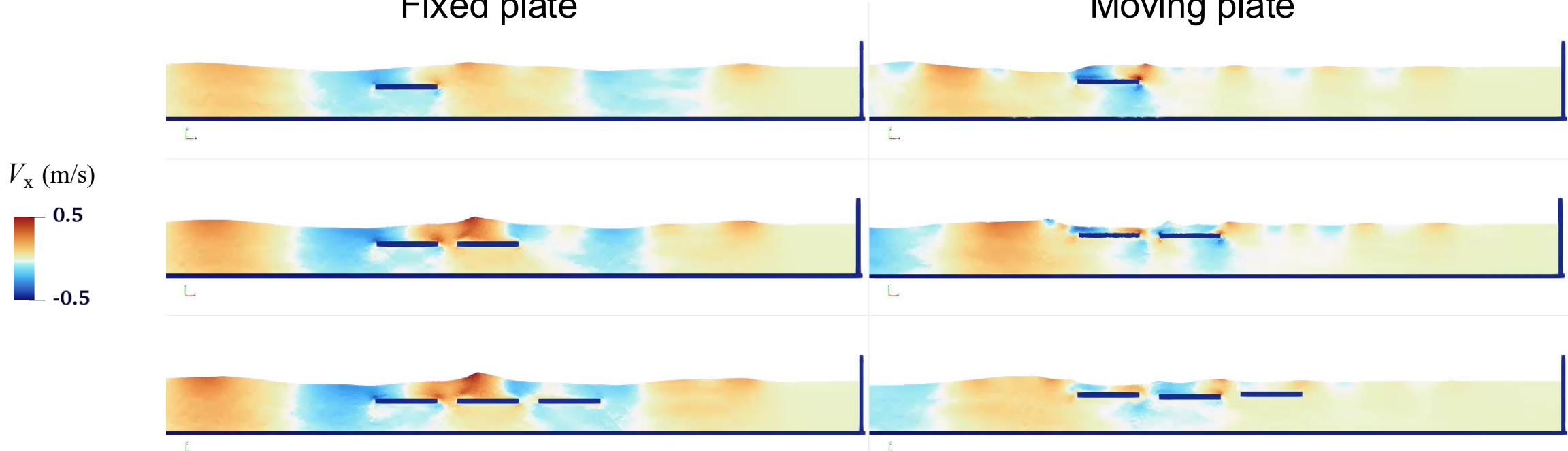
Wave elevation w/ and w/o active control

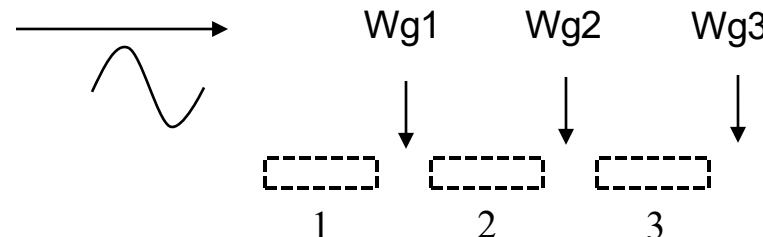




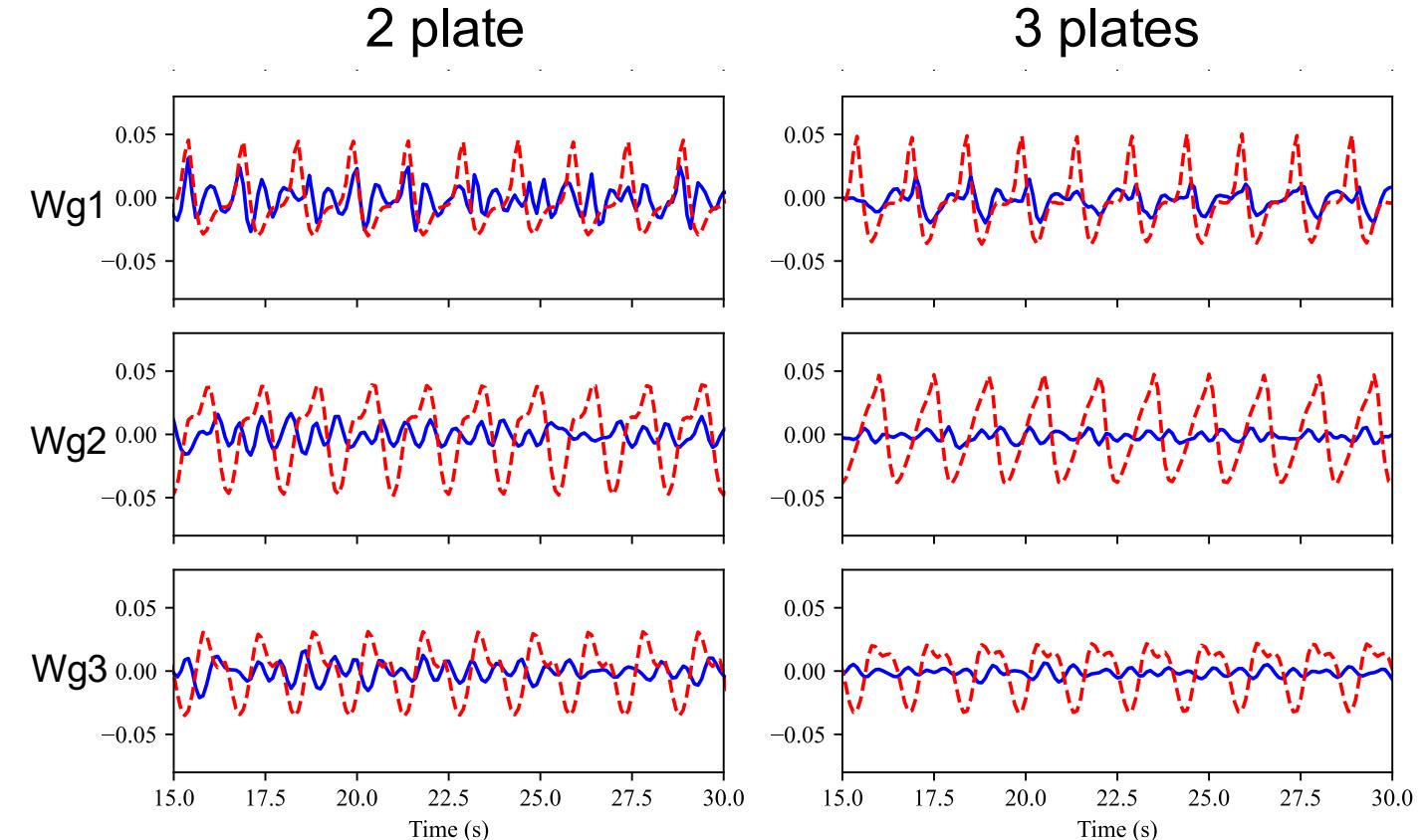
Relative motion between the plates
 → Wave reflection and interaction
 → Dissipate wave energy

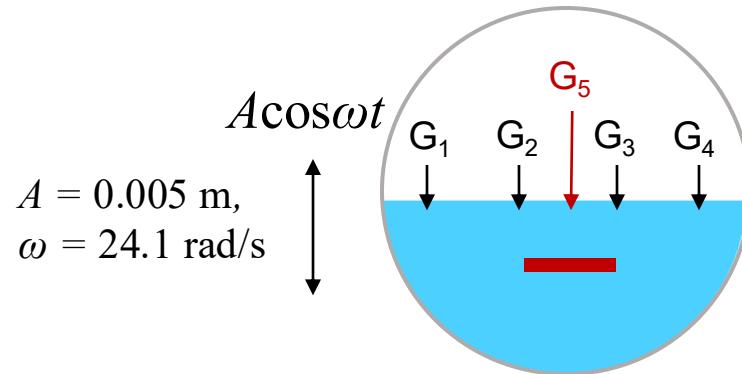
Fixed plate





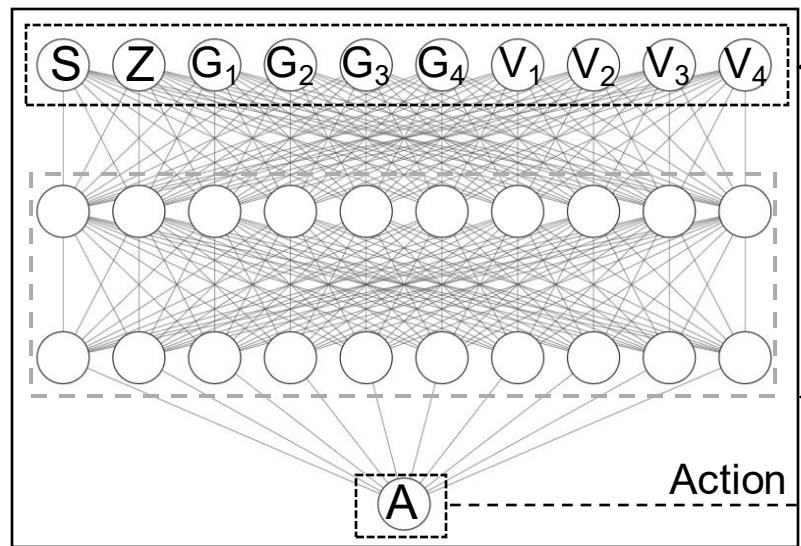
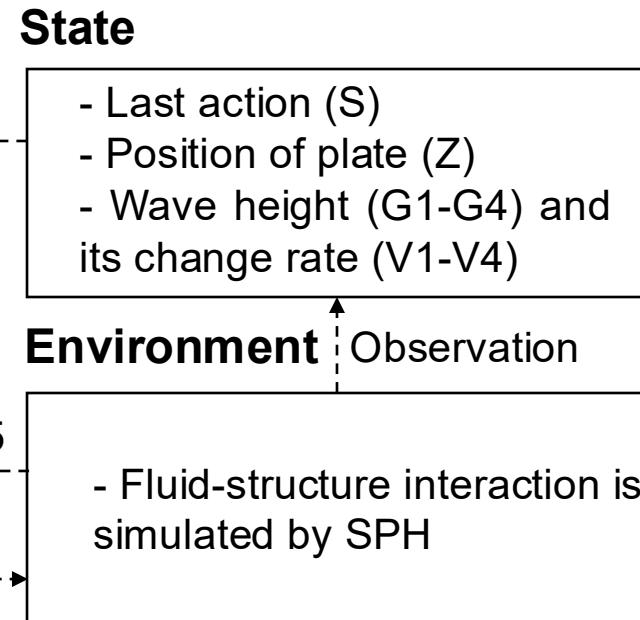
- Active control plate effectively reduces the wave height
- The wave attenuation effect increases with the number of plates



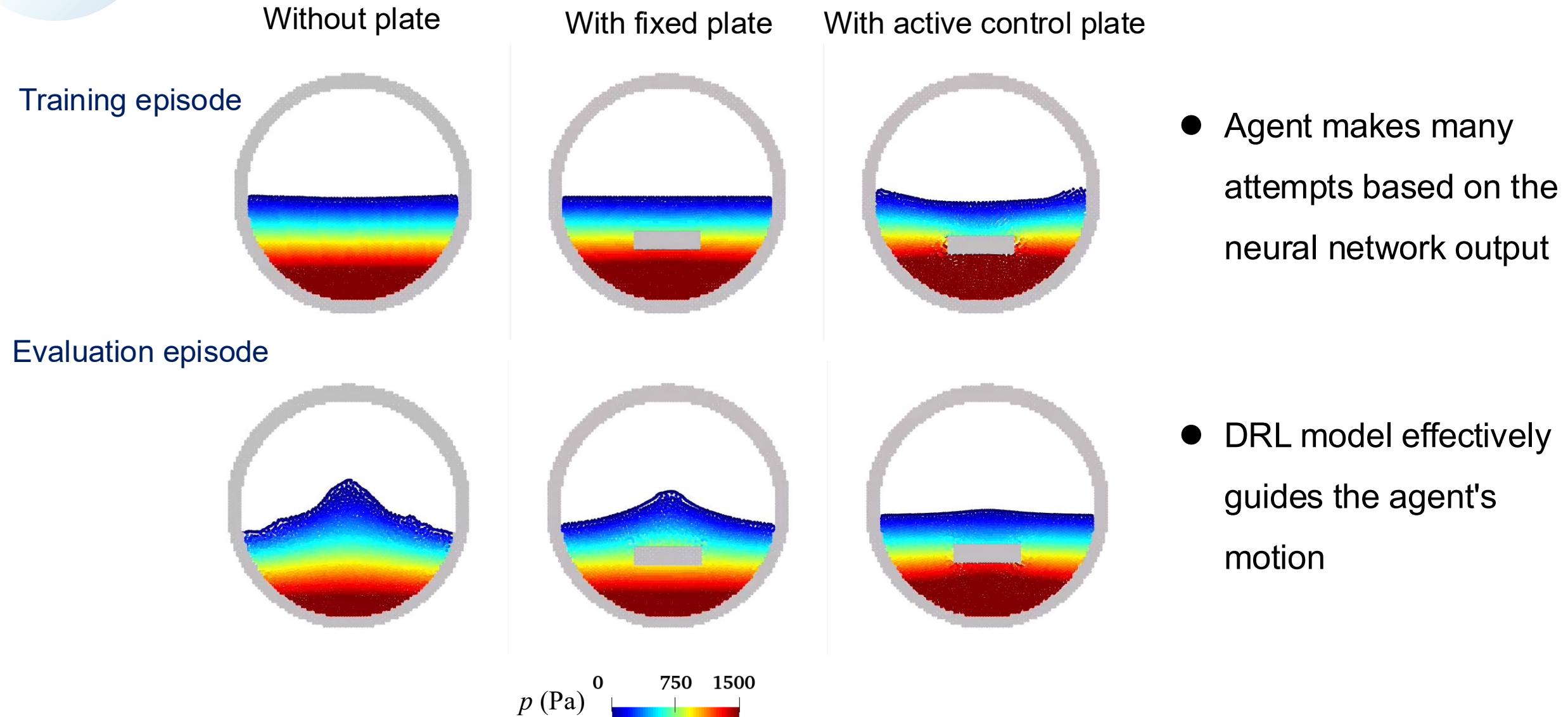


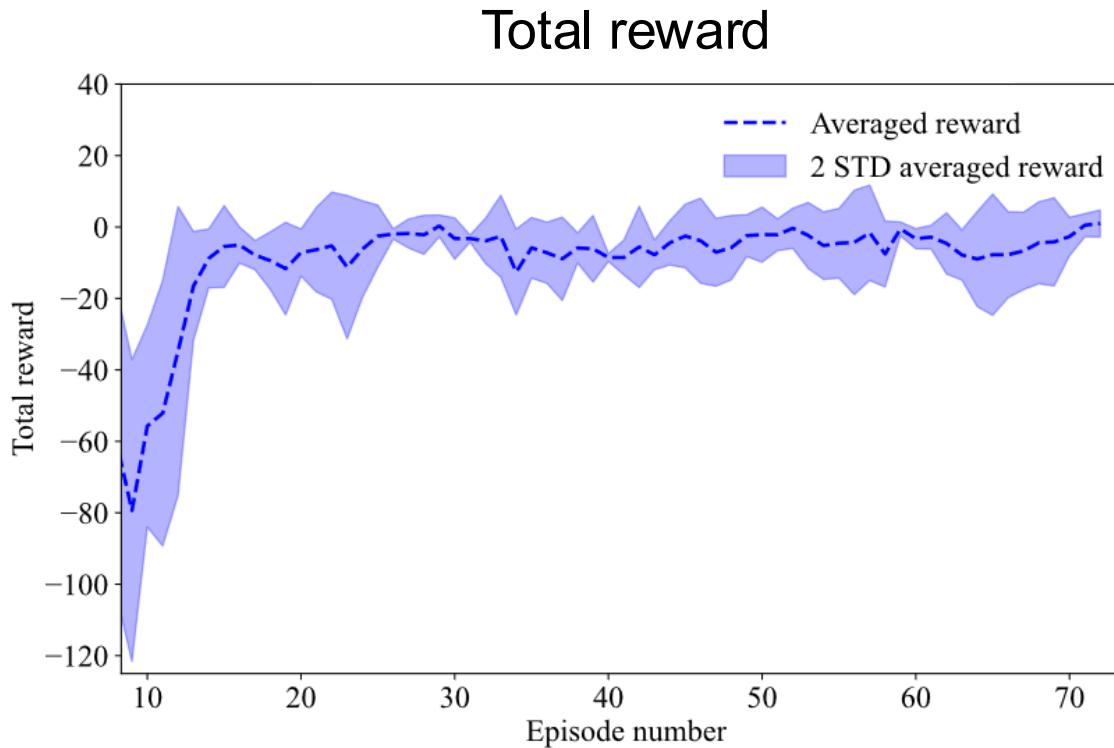
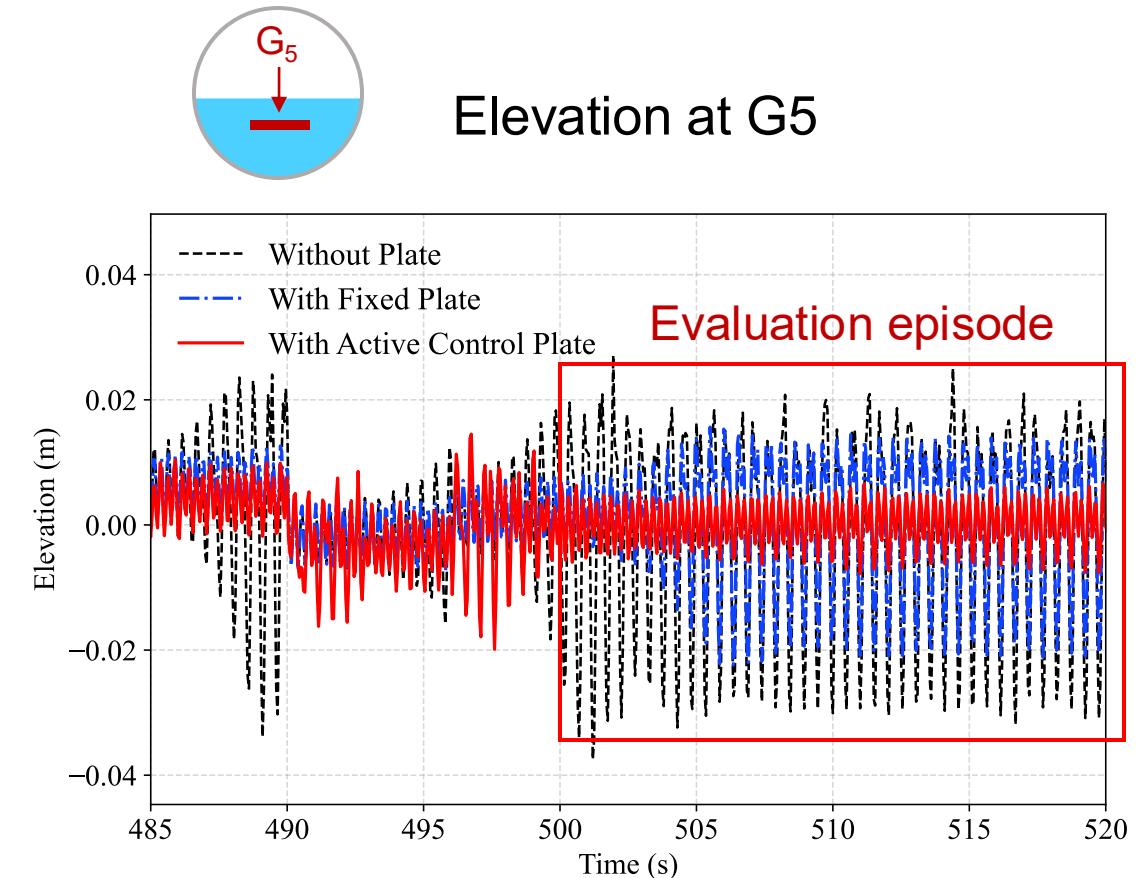
- Training episodes : 90
- Evaluation episodes : 10
- Episode duration: 4 s

DRL ANN : 10 \rightarrow 128 \rightarrow 128 \rightarrow 1



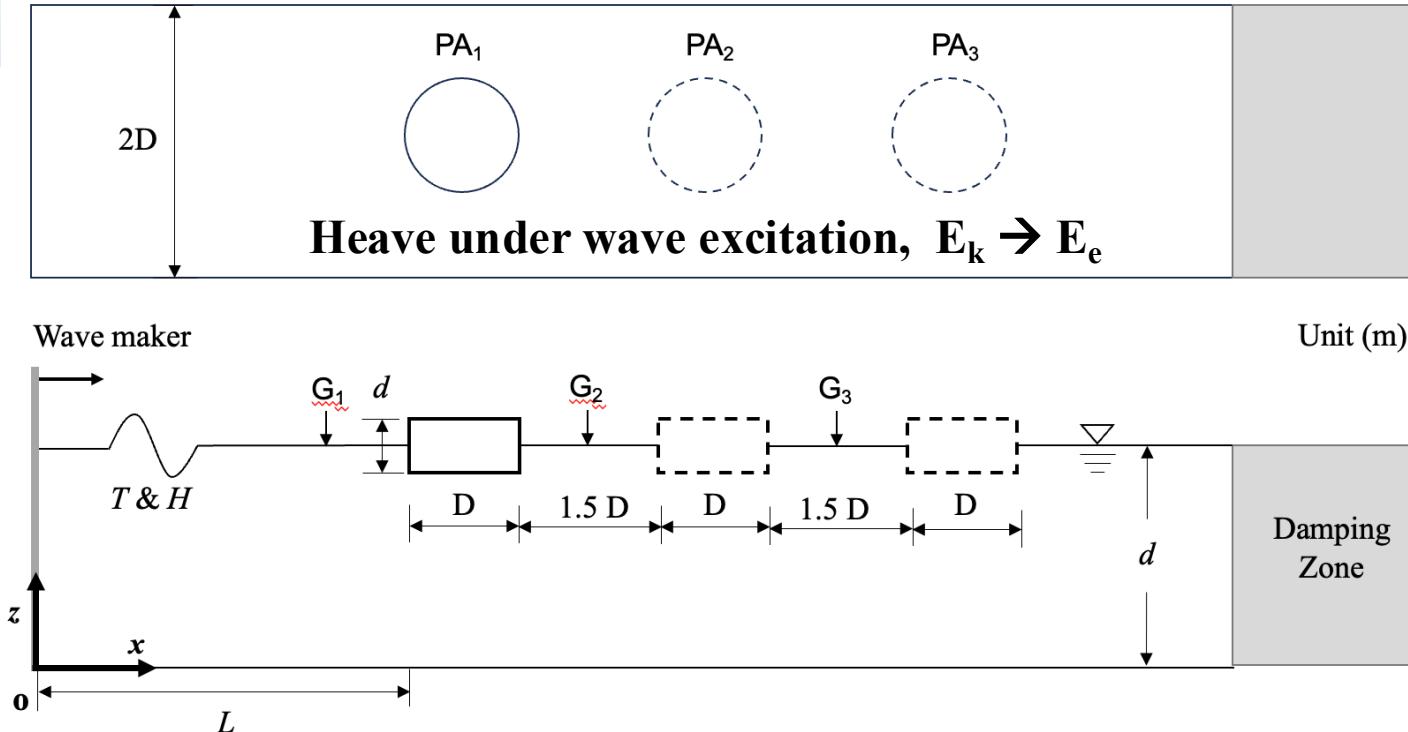
- SPH solver acts as environment during training
- DRL model guides movement of baffle to suppress sloshing





- The average reward keeps convergence and tuning slightly after 20 episodes
- 85% and 65% reduction with active control (vs no plate & fixed plate)

3.3 Point absorber wave energy converter : overview



Output : $o_i, o_i \in [-1,1]$ $k_{p,i} = k_{\text{base}} + o_i \Delta k_{\text{max}}$

Input : $G_{i,1} - G_{i,3}$, $d (G_{i,1} - G_{i,3}) / dt$, $v_{z,i}$, z_i , a_i^{n-1}

Reward : $r_i = (1 - \gamma_p)P_{\text{out},i} + \gamma_p \frac{1}{N} \sum_{j=1}^N P_{\text{out},j}$ $P_{\text{out},i} = k_{p,i} v_i^2$
 WEC Energy output Encourage collaborating

$$M \frac{d\mathbf{V}}{dt} = \sum_j m_j \mathbf{f}_j + \mathbf{D}_t \quad \mathbf{D}_t = -k_p \mathbf{v}$$

Power output $P_{\text{abs}} = k_p v_z^2(t)$

negatively related

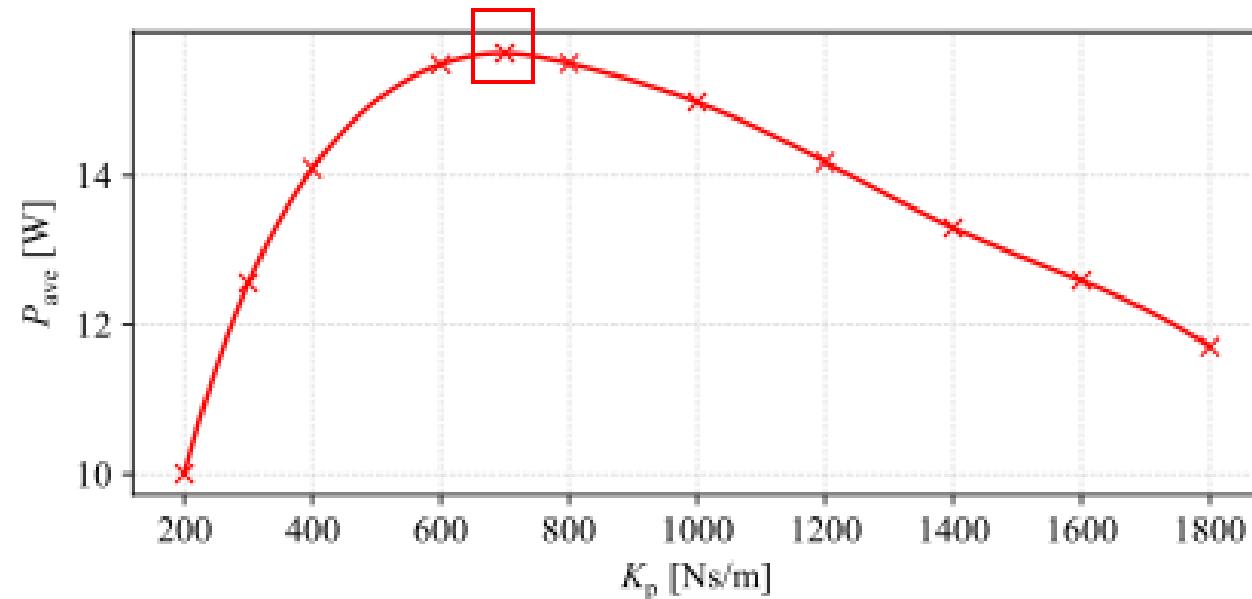
Make the damping parameter K_p adaptive to cope with different wave conditions → increase power output

➤ Determine damping coefficient k_{base}

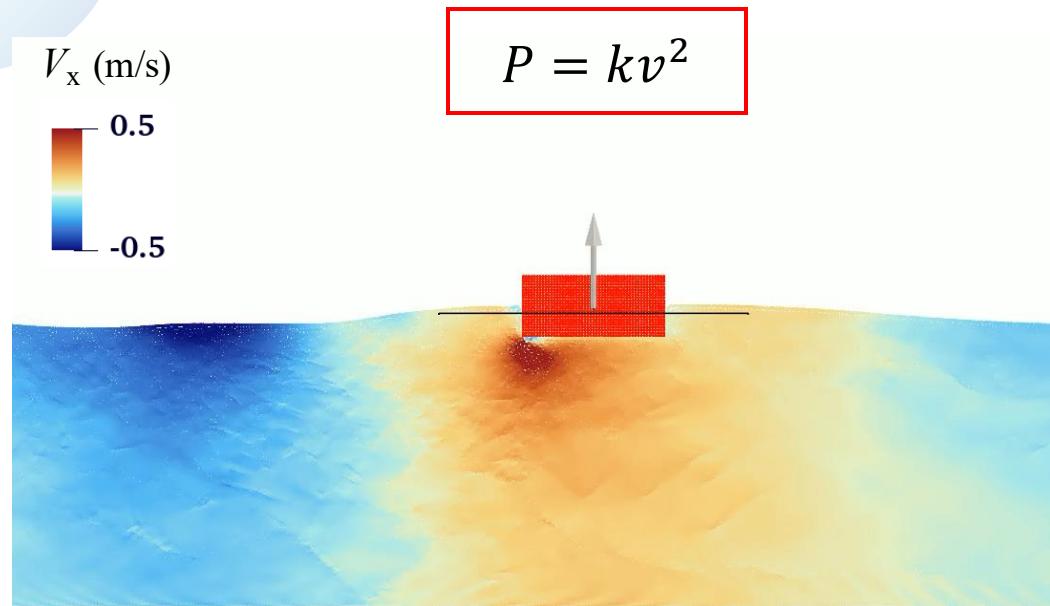
$$T = 1.5 \text{ s}, d = 0.5 \text{ m} \quad P_{\text{ave}} = \frac{1}{T} \int_{t_0}^{t_0+T} P_{\text{abs}}(t) dt, \quad P_{\text{abs}} = k_p v_z^2(t)$$

Output : $o_v, o_i \in [-1,1]$

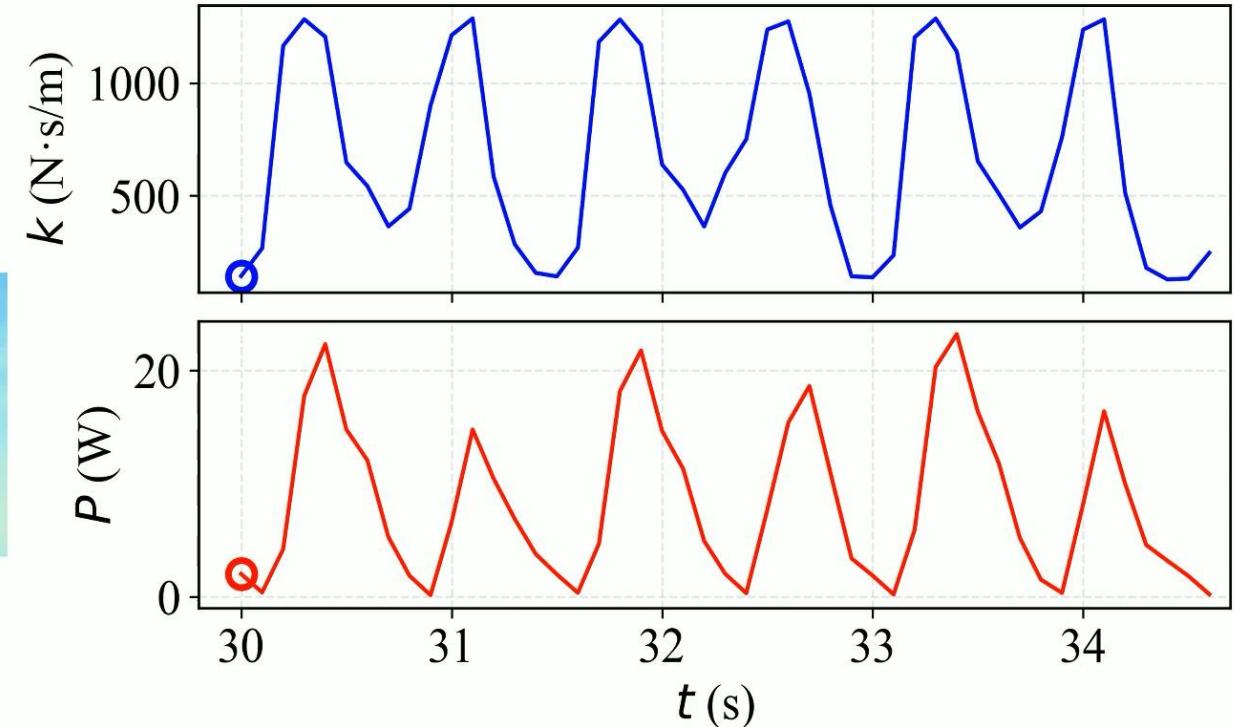
$$k_{p,i} = \boxed{k_{\text{base}}} + o_i \Delta k_{\text{max}}$$



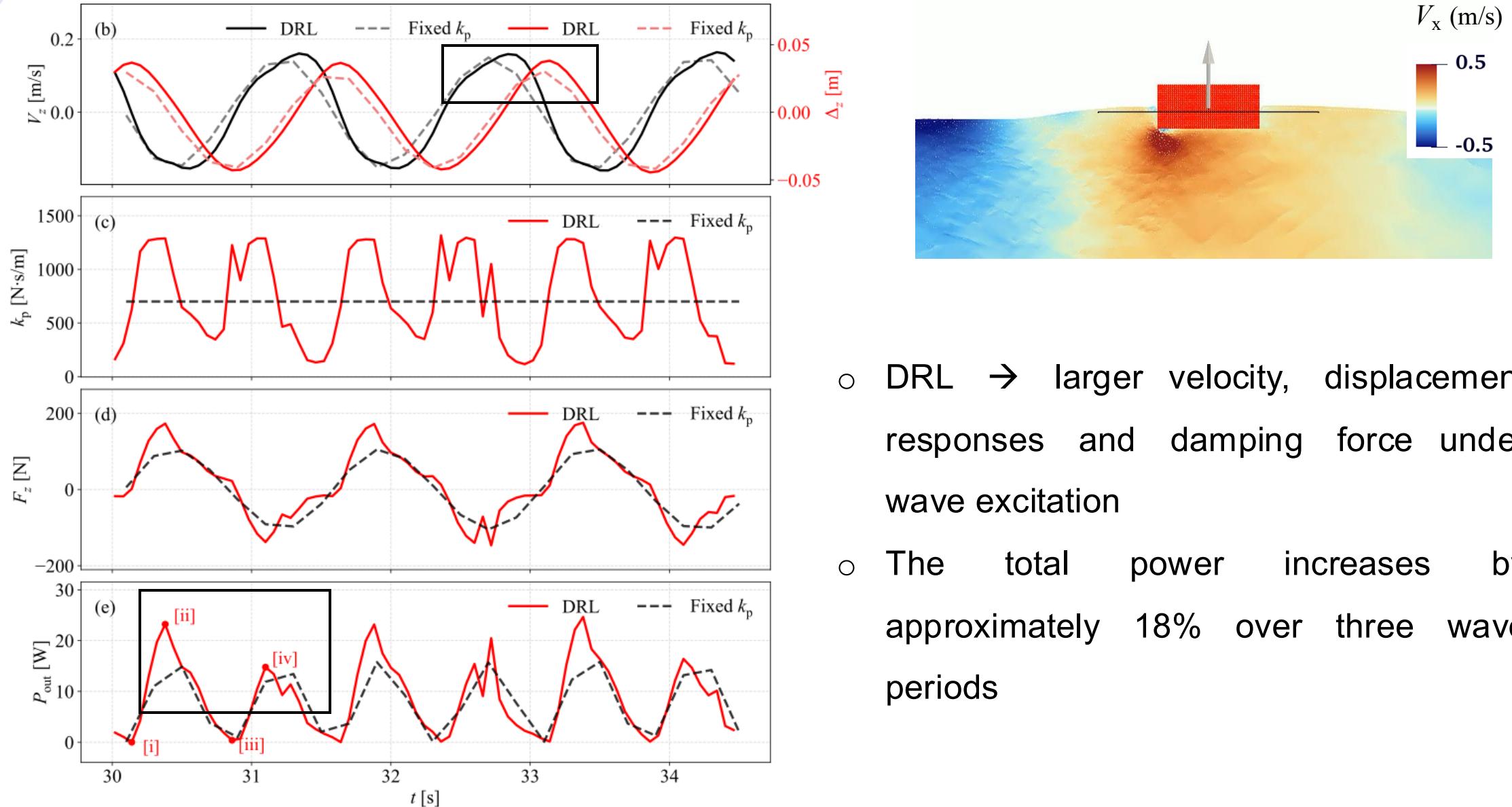
- DRL optimization starts from an optimal initial value k_{base}



$$P = kv^2$$

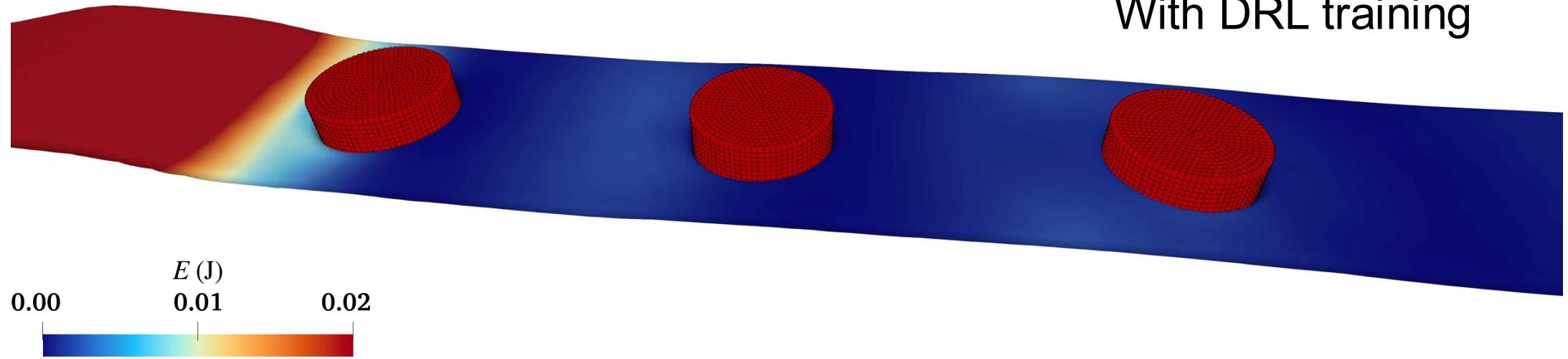
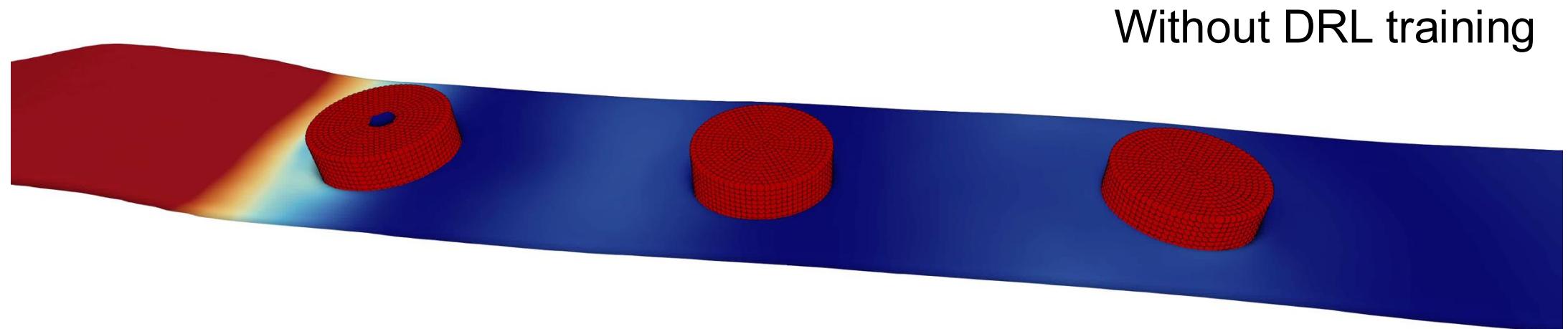


- k exhibits two peaks in one wave period, (1) near the wave crest (2) near the wave trough
- A higher energy output is observed when the wave passes the trough compared to the crest phase

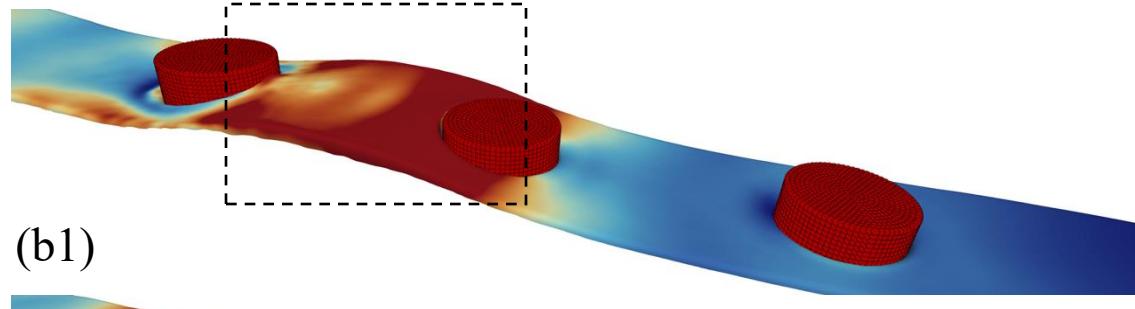


- DRL → larger velocity, displacement responses and damping force under wave excitation
- The total power increases by approximately 18% over three wave periods

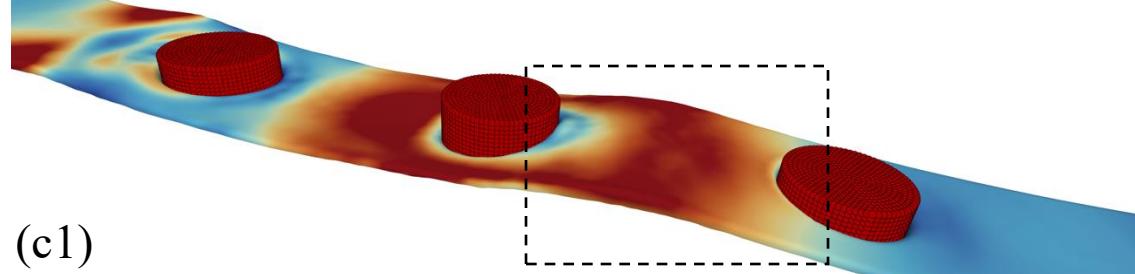
Time: 45.0



(a1) Without DRL



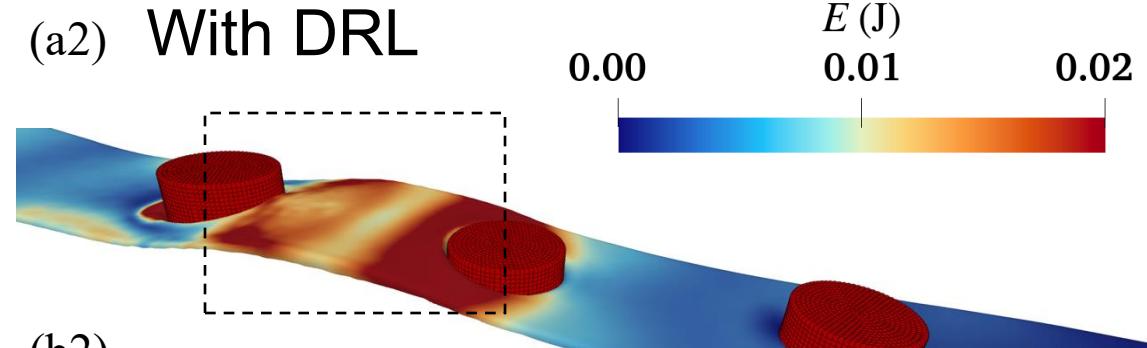
(b1)



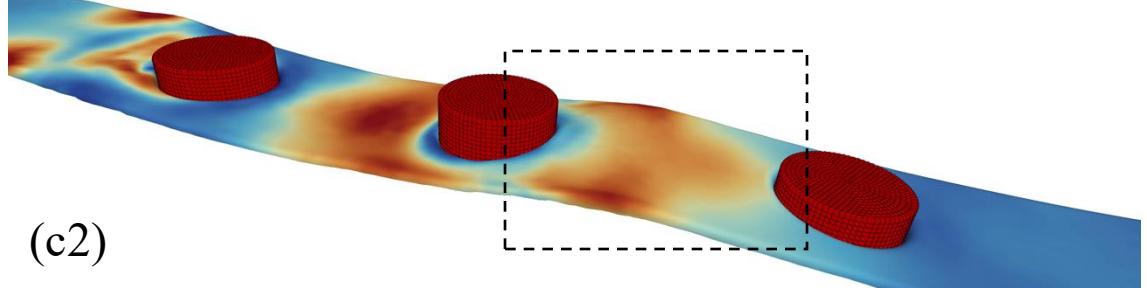
(c1)



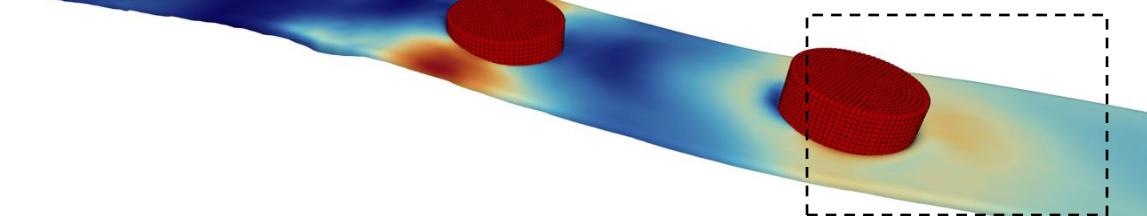
(a2) With DRL



(b2)



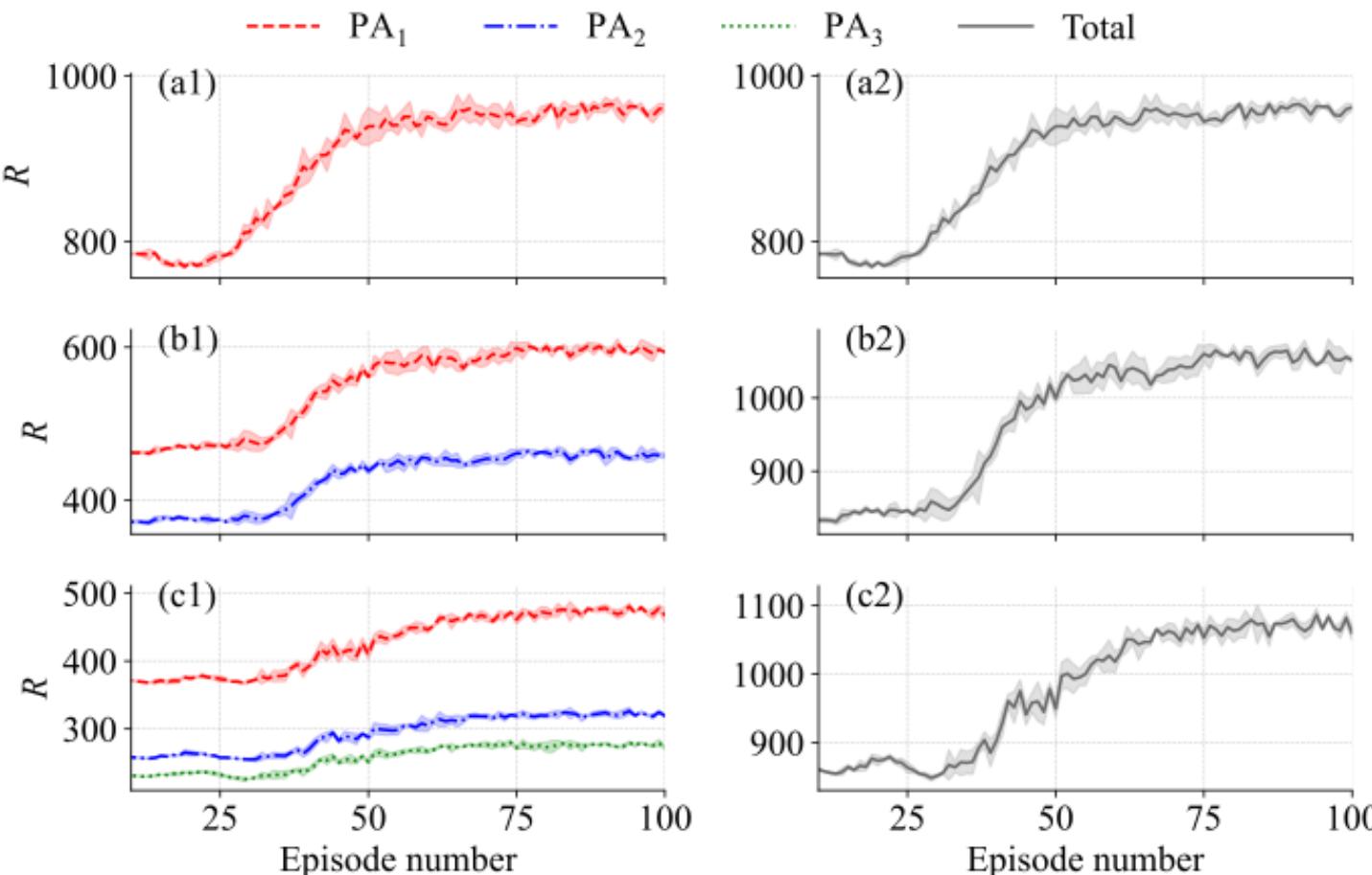
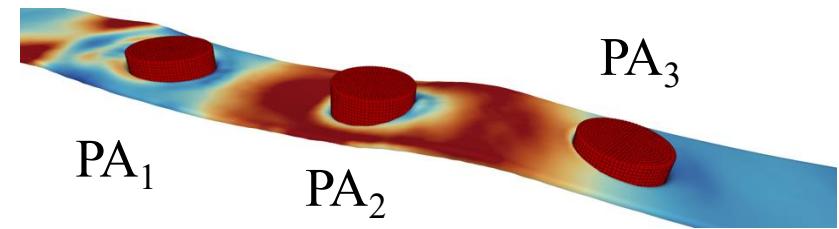
(c2)



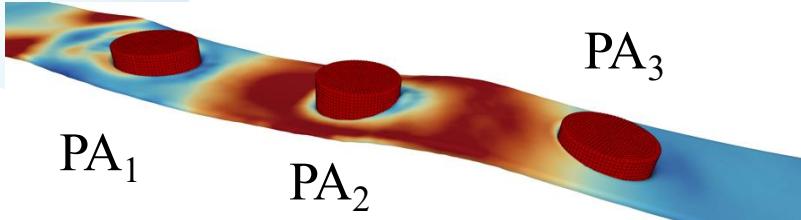
- Trained wave energy device improves absorption efficiency

$$r_i = (1 - \gamma_p)P_{\text{out},i} + \gamma_p \frac{1}{N} \sum_{j=1}^N P_{\text{out},j} \quad P_{\text{out},i} = k_{p,i} v_i^2$$

WEC Energy output Encourage collaborating

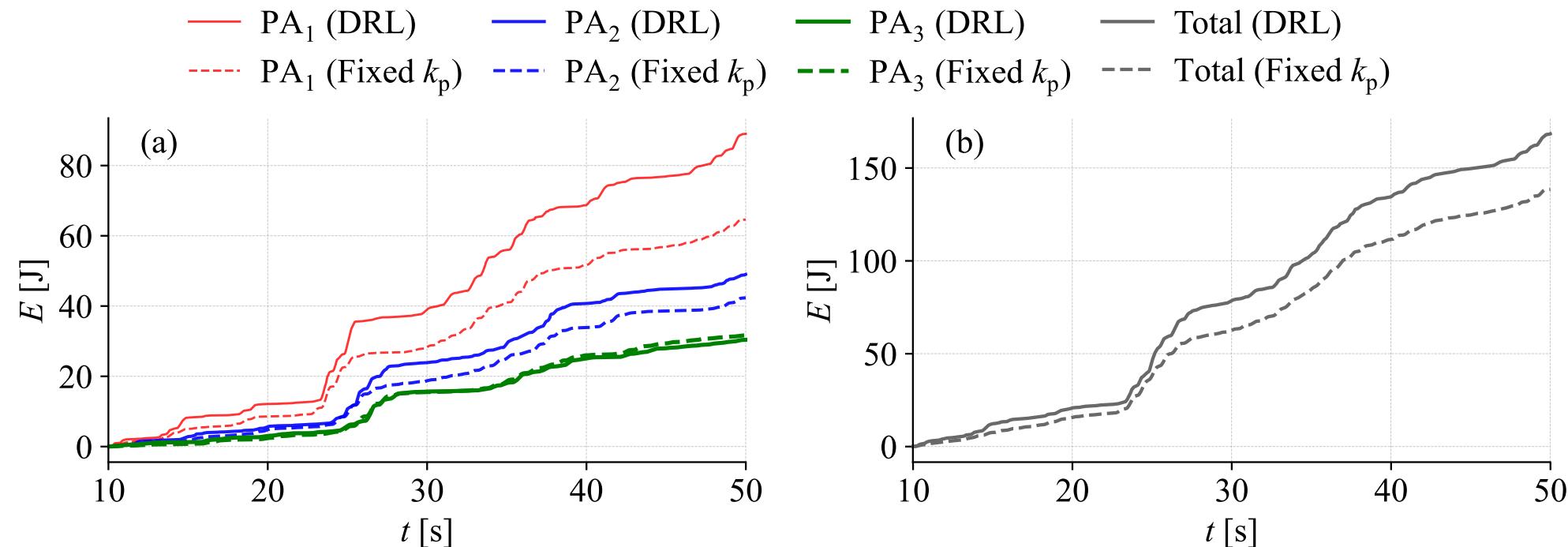


- The average reward keeps increasing and tuning slightly after 75 episodes
- Reward decreases from the first to the third PA



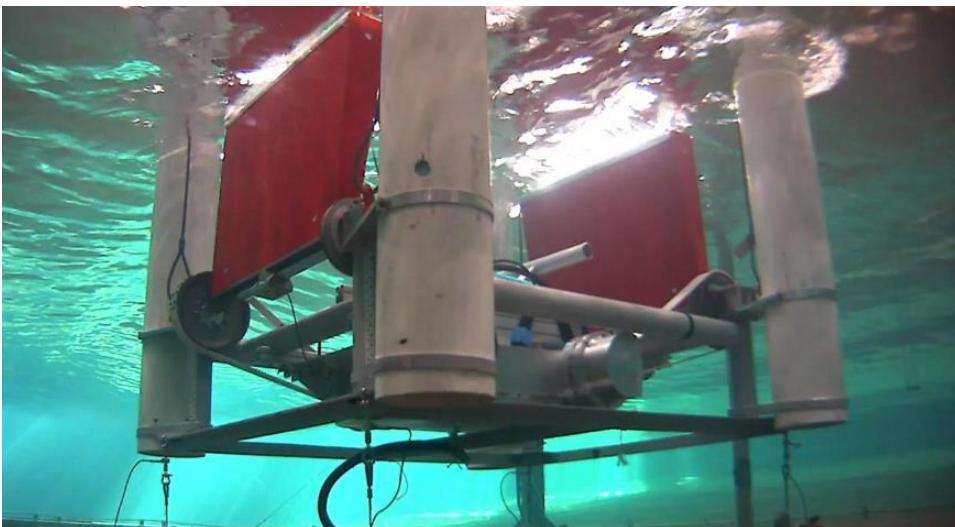
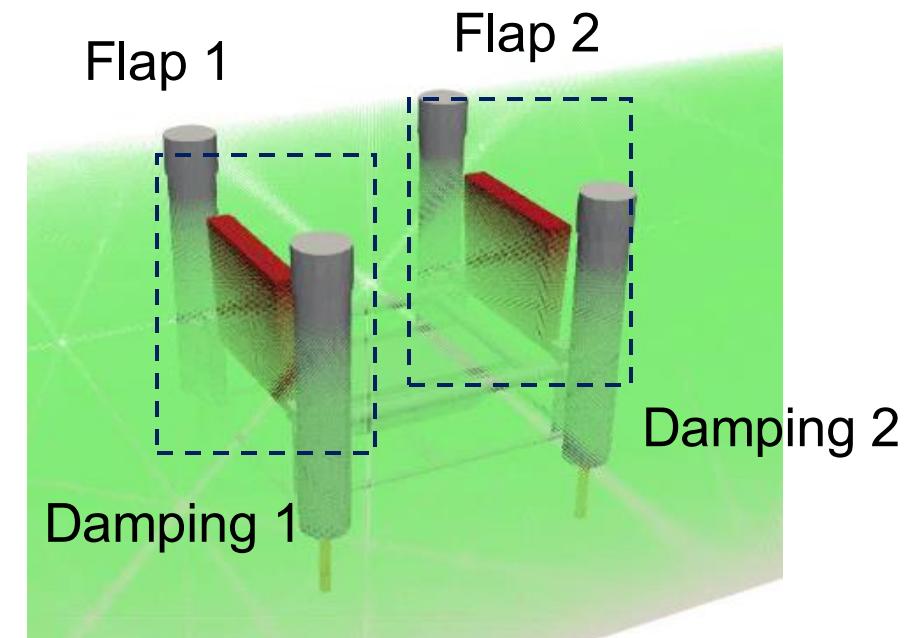
$$r_i = (1 - \gamma_p)P_{\text{out},i} + \gamma_p \frac{1}{N} \sum_{j=1}^N P_{\text{out},j} \quad P_{\text{out},i} = k_{p,i} v_i^2$$

WEC Energy output Encourage collaborating



- Energy output increase for PA₁, PA₂, PA₃ and total system are 37.7%, 15.7%, -4.0% and 21.5%
- The slight decrease in the energy output of PA₃ reflects the cooperative effect among the agents

- SPH + DRL model → **Active control** in ocean engineering
- Multi Agent DRL → Achieve **cooperative optimization** among multiple agents
- GPU parallelism → **3D** practical engineering applications
- Future work: Improve the energy output (Mooring lines + Multibody rigid dynamics + Wave)



浙江大学 海洋学院
OCEAN COLLEGE, ZHEJIANG UNIVERSITY

Particles 2025,
Barcelona

KYOTO
UNIVERSITY

Thank you for your attention

Welcome to ZJU @ Zhoushan